Course ID: | PBGG(CRSS) 8890. 3 hours. |
Course Title: | Plant Cytogenetics: Behavior and Evolution of the Plant Genome |
Course Description: | Classical and molecular cytogenetics are integrated to explain the reproductive behavior of angiosperms, the applications of cytogenetics to plant improvement, the study of plant genetics, and the structure and evolution of the plant genome. |
Oasis Title: | Plant Cytogenetics Genome |
Prerequisite: | PBIO 8100 or permission of department |
Pre or Corequisite: | PBGG(CRSS)(HORT) 4140/6140 or permission of department |
Semester Course Offered: | Offered spring semester every odd-numbered year. |
Grading System: | A-F (Traditional) |
|
Course Objectives: | To familiarize students with the origin, biology and behavior
of angiosperm chromosomes, such that students will then be able
to use this information to facilitate further studies in plant
genetics, marker-assisted selection, plant evolution, or plant
breeding. |
Topical Outline: | I. Foundations of cytogenetics
A. The cell theory
B. Chromosome theory of heredity
C. The sex chromosome
D. Independent assortment
E. Non-disjunction
1. Primary
2. Secondary
F. Notable researchers
II. Chromosome morphology & terminology
A. Landmarks
1. Terminology
2. Morphology
B. Chromatin structure
C. Stains
D. Karyotypes
E. Major features
1. The NOR
2. Knobs
3. Telomeres
4. Centromeres
F. Specialized chromosomes
1. Sex chromosomes
a. Homo vs heteromorphic
b. Active vs dosage
c. Evolution
2. B chromosomes
a. Behavior
b. Function
G. Nuclear architecture
1. Rabl configuration
2. Genomic domains
III. Mitosis
A. Stages
B. n, x, and c values
C. Deviations from normal mitosis"When cell division becomes
difficult"
1. Multinucleate condition
2. Polysomaty/endomitosis
3. Polyteny
4. Somatic reduction
a. Chromosome substitution
b. Reductional groupings
5. Aneusomaty/Somatic instability
a. Changes in DNA content
b. Cultivar breakdown
6. Non-random segregation
7. Somatic (mitotic) crossing over
a. Sister chromatid cross overs
D. Colchicine and c-mitosis
E. Genetic control
IV. Meiosis
A. Life cycles
B. Stages
C. Sporo and gametogenesis
D. Chromosome pairing
1. Synapsis
a. The synaptonemal complex
b. Role in chromosome disjunction
c. Synaptic mutants
2. Genetic control
a. Use in introgression
3. Secondary associations
4. Use in cytotaxonomy
E. Crossing over and recombination
1. Fundamental concepts
a. Frequency of chiasmata = frequency of crossing over
b. Recombination takes place between homologues
c. CO occurs at the 4-strand stage
d. Models of chiasma
(1) Classical or 2-plane
(2) Chiasmatype or 1-plane
(3) Copy choice
2. Localized chiasmata
3. Relationship between crossing over and mapping
a. % crossing over vs. centimorgans
4. Interference
a. Chromosome
b. Chromatid
(1) Negative
(2) Positive
5. The recombination index
6. Variability in CO
a. Effect on physical vs cytological maps
b. Factors affecting CO
(1) Centromere
(2) Heterochromatin
(3) NOR
(4) Telomeres
(5) Gender
(6) Age
(7) Temperature
(8) Interchromosomal effects
(9) Stress
(10) B chromosomes
(11) Genetic effects
(12) Chromosome length
(13) Wide hybridization
(14) Genotype
(15) Arm dynamics
(16) Knobs
(17) Alien cytoplasm
(18) Coding/noncoding
7. Effect of crossover variability on mapping
a. discrepancy between xmata maps and molecular maps
b. compensation for double crossovers
8. Significance of CO
a. Manipulations of CO frequency
9. Preferential segregation/meiotic drive
a. Neocentric activity- the maize K10 (Ab10) chromosome
b. Complementary gametic elimination
10. Sister strand crossing over
F. Altering the meiotic process
1. Achiasmate meiosis
2. Inverse meiosis
a. Holokinetic chromosomes
3. 2n gametes
a. First vs. Second division restitution
(1) Mode
(2) Mechanism
b. Mechanisms
(1) Pollen
(2) Eggs
c. Unreduced gametes
d. Genetic control of 2n gamete formation
e. Uses in plant breeding and genetics
(1) Half-tetrad analysis
(a) Unordered tetrad analysis
(2) Use in plant breeding
(a) Yield advantages
(b) True seed production
(3) Searching for 2n gametes
4. Apomixis
a. Types and definitions
(1) Apospory
(2) Diplospory
(3) Adventitious embryony
b. Genetic control of apomixis
c. Uses in plant breeding
d. Evolutionary significance
V. Chromosome reconfigurations
A. Deficiencies
1. Uses
2. Mapping deficiencies
B. Duplications
C. Inversions
1. Paracentric
a. Double crossovers in loops
2. Pericentric
3. Multiple inversions
D. Translocations (interchanges)
1. Types
2. Alternate and Adjacent separations
3. Pseudolinkage
4. Effects of cross overs
a. Crossovers in interstitial regions
5. Uses in plant breeding
6. Oenothera cytogenetics
a. Breeding behaviour
b. Cytology
c. Identification of complexes
E. Ring chromosomes
F. Breakage fusion bridge cycles
1. Chromosome
2. Chromatid
VI. Changes in chromosome number
A. Aneuploidy
1. Trisomics
a. Types
b. Effect on genetic ratios
c. Use in plant genetics
d. Use in hybrid seed production
B. Changes in whole chromosome sets
1. Haploidy
a. Types
b. Origin
c. Use in breeding and genetics
2. Triploidy
a. Origin
b. Meiotic behaviour
(1) Binomial probability
3. Polyploidy
a. Frequency and extent of polyploidy
b. Types of polyploidy
(1) Polysomic polyploidy (autopolyploidy; homogenomic polyploidy)
(a) Tetrasomic inheritance
(b) Distinguishing features
i) 5 genotypes possible per locus
ii) > 2 alleles can be a locus
iii) Heterozygous gametes are produced
iv) Genetic ratios are complex
v) Gene-centromere affects segregation
(c) Segregation models
i) Random chromosome segregation
ii) Random chromatid segregation
iii) Maximum equational segregation
(d) Double reduction (รก)
i) Formation of IV
ii) Formation of equational chromosomes
iii) Equational separations at Ana I
iv) Correct orientation at Met II
(e) Sample sizes to test ratios or recover desired genotype
(f) Fertility in synthetic autotetraploids
(2) Disomic polyploidy (allopolyploidy; heterogenomic polyploidy)
(a) Differentiating tetrasomic vs. disomic polyploids
i) Tetrasomic (35:1) vs. digenic (15:1) ratios
ii) Meiotic pairing of chromosomes
iii) Haploids
iv) Chromosome number
v) Resynthesis of allopolyploid
vi) Karyotype
vii) Morphology
viii) Biochemical traits
ix) Breeding behavior
x) Nuclear architecture
(b) Quantifying allosyndesis vs. autosyndesis
i) Autosyndetic pairing
ii) Random pairing
iii) Allosyndetic pairing
iv) Segmental allopolyploidy
(c) Characteristics of disomic polyploids
i) Presence of genetic duplications
ii) Breeding behaviour
iii) Pivotal genome
a) Changes in new alloploids
iv) Built-in heterozygosity
(d) Identification of progenitor species
i) Example with chromosome pairing
ii) Example using molecular markers
(e) Origin of polyploidy
i) Artificial induction
ii) Somatic doubling
iii) 2n gametes
c. Aneuploids in wheat
(1) Types and origin
(2) Behaviour of univalents
(3) Transmission of monosomics and trisomics
(4) Compensation
(5) Identification of homoeologues
(a) Compensation
(b) Molecular techniques
(6) Similarity of homoeologues
d. Substitution lines
(1) Derivations
(2) Practical applications of substitution lines
(3) Alien addition lines
e. Monosomics
(1) Monosomic alien addition lines
(2) Monosomics in a diploid
VII. Evolution of the karyotype
A. Changes in the base chromosome number = dysploidy
1. Types
a. Progressive reduction (descending basic aneuploidy)
b. Progressive increase (ascending basic aneuploidy)
c. Progressive reduction + polyploidy
d. Polyploidy + progressive reduction
e. Robertsonian fusion/fission
f. Breakage fusion bridge cycles
2. Trends
3. Role of chromosomal rearrangements in speciation
a. Meiotic configurations of interspecific hybrids
b. RFLP's and in situ hybridization/synteny
B. Changes in DNA content
1.The amount of DNA in a plant
2.The number of genes required to make a plant
3. Adaptive value of DNA content
a. Nucleotype
4. Repetitive DNA
a. Types of repetitive DNA
(1) Interspersed
(2) Tandem
(3) Reverse or inverted
b.Location of repetitive DNA within the genome
c. Amplification/deamplification of repetitive DNA
(1) Unequal crossing over
(2) Intrastrand recombination
(3) Replication slippage
(4) Retrotransposons
d. Concerted evolution
(1) Unequal crossing over
(2) Gene conversion
e. Evolution of gene pairs
f. DNA flux and species divergence
g. Purpose of repetitive DNA
(1) Selfish DNA
(2) Polite DNA
(a) Chromosome structure and biology
(b) Gene expression
h. Genomic shock |